Monatshefte für Chemie 111, 551-554 (1980)

Monatshefte für Chemie © by Springer-Verlag 1980

Conformations and Base-catalyzed Equilibrations of N-Nitroso-decahydroquinolines and N-Nitroso-2-methyldecahydroquinolines

Short Communication

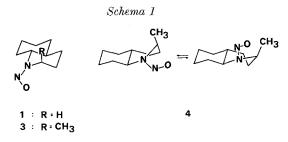
Friedrich W. Vierhapper

Institut für Organische Chemie, Universität Wien, A-1090 Wien, Austria

(Received 27 December 1979. Accepted 17 January 1980)

Conformations of six title compounds were determined by ¹³C-NMR spectroscopy. Equilibration of the 2-methyl-compounds gives as main products the derivatives of the amines least abundant in the product mixture of the catalytic hydrogenation.

(Keywords: A_{1,3}-strain; ¹³C-NMR; Free energy differences)


Konformation und Base-katalysierte Äquilibrierungen von N-Nitroso-decahydrochinolinen und N-Nitroso-2-methyl-decahydrochinolinen (Kurze Mitt.)

Die Konformationen der sechs Titelverbindungen wurden mittels ¹³C-NMR Spektroskopie bestimmt. Äquilibrierung der 2-Methyl-verbindungen ergab als Hauptprodukte die Derivate der bei katalytischer Hydrierung in geringster Menge entstandenen Amine.

Interest in the stereochemistry of decahydroquinolines initiated an investigation of the N-nitroso-derivatives of *trans*- and *cis*-decahydroquinolines: reaction with electrophiles after metallation^{1,2}, or basecatalyzed equilibration², followed by denitrosation might furnish substantial amounts of isomers formed only in very minor proportion by the catalytic hydrogenation or chemical reduction of the unsaturated compounds^{3,4a}.

N-Nitroso-*trans*-decahydroquinoline (1; mp. 32–33°; lit.⁵ 32–33°), N-nitroso-*cis*-decahydroquinoline^{4b} (2; mp. 7–9°), N-nitroso- 2α -methyltrans-decahydroquinoline* (**3**; mp. 85-86°), N-nitroso-2 β -methyl-transdecahydroquinoline* (**4**; mp. 29-30°), N-nitroso-2 α -methyl-cis-decahydroquinoline* (**5**; mp. 19-20°) and N-nitroso-2 β -methyl-cis-decahydroquinoline* (**6**) were prepared by reacting the respective amines^{3,4a} with ethyl nitrite in anhydrous THF^1 . The conformational properties of **1-6** were determined by ¹³C- and ¹H-NMR^{4b,5} spectroscopy; conformer ratios were obtained by averaging integrations of > 5 pairs of corresponding signals.

Compounds 1 and 3 exist as single conformations with both rings in the chair form and the N—O anti to C-8 a; the axial methyl group in 3 has no influence on the orientation of the nitroso group. At room temperature, two conformations in a ratio of 76:24 are observed for 4; comparison of the ¹³C shifts of both forms with 1 shows that the piperidine portion of the molecule must be twisted from the chair form (Scheme 1) due to the very high additional $A_{1,3}^{syn}$ -strain caused by the equatorial methyl group. The similarity in the shifts of C-8a indicates that both conformations have the N—O bond anti to this carbon. If the probe temperature was raised to + 130°, all carbon atoms except C-2 and CH₃ showed single resonances, pointing to a rather low barrier of inversion between the two conformations.

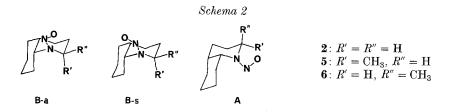
N-Nitroso-*cis*-decahydroquinoline (2) exists in the two conformations^{4b} B-a and B-s shown in Scheme 2 ($\dot{R}' = R'' = H$); the form with the N—O bond *anti* to C-8a (B-a) predominates slightly (ratio 55:45), No ring-inverted conformation A is seen because of the $A_{1,3}^{anti}$ -interaction of the N—O group with C-8. Elevation of the probe temperature to + 130° has no palpable effect: the barrier of rotation around the N—N bond is much higher than the barrier of inversion for the two non-chair conformations of 4. The two conformations B-a and B-s of 5 (Scheme 2, $R' = CH_3, R'' = H$) have the methyl group *syn*-axial to C-8 to avoid the

^{*} Nomenclature: " β " means "substituent is on same ringside as substituent or hydrogen at C-4a"; "a" means "on opposite ringside". The new compounds **3-6** gave satisfactory elemental (C, H) analysis after distillation in a Kugelrohr (80°/0.05 Torr) and—for **3-5**—recrystallization.

Comp.	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-8a	C-4a	CH ₃
1	40.4	24.9	31.8	32.5	25.4	25.4	28.9	66.9	44.0	
3	42.7	29.4	26.9	32.5	25.5	25.5	29.2	62.0	43.6	15.4
$\begin{array}{c} {\bf 4}_{\rm d,c}^{\rm b,c} \\ {}_{\rm f}^{\rm f} \end{array}$	${47.7 \atop {53.3} e}$	$25.2 \\ 29.5 \\ 26.9$	$24.1 \\ 26.1 \\ 25.0$	$33.7 \\ 33.1 \\ 33.3$	$25.5 \\ 26.1 \\ 25.5$	$24.8 \\ e \\ 24.9$	$31.8 \\ 30.3 \\ 31.7$	$\begin{array}{c} 61.5 \\ 61.7 \\ 61.9 \end{array}$	$37.1 \\ 37.6 \\ 37.6$	17.9 e e
2 ^b d	$\begin{array}{c} 35.5\\ 46.7\end{array}$	$\begin{array}{c} 24.9 \\ 26.4 \end{array}$	$\begin{array}{c} 24.3 \\ 24.6 \end{array}$	$\begin{array}{c} 30.4\\ 30.8 \end{array}$	$\begin{array}{c} 20.6 \\ 20.3 \end{array}$	$\begin{array}{c} 25.0\\ 25.3 \end{array}$	$\begin{array}{c} 26.2 \\ 23.0 \end{array}$	$\begin{array}{c} 60.9 \\ 49.4 \end{array}$	$\begin{array}{c} 36.3\\ 34.6\end{array}$	
$5_{d,g}^{b,g}$	$\begin{array}{c} 43.0\\ 50.7\end{array}$	(30.3) (30.5)	(20.6) (20.6)	$(31.1) \\ (31.1)$	(20.4) (20.8)	$25.8 \\ 25.5$	$\begin{array}{c} 29.7 \\ 26.2 \end{array}$	$\begin{array}{c} 61.4 \\ 54.0 \end{array}$	$\begin{array}{c} 36.0\\ 34.9 \end{array}$	$\begin{array}{c} 18.9 \\ 22.4 \end{array}$
$\boldsymbol{6}_{d,g}^{b,g}$	$\begin{array}{c} 53.8\\ 43.9\end{array}$	$35.3 \\ (24.6)$	(24.2) (24.7)	$\begin{array}{c} 30.7 \\ 25.9 \end{array}$	$\begin{array}{c} 20.2 \\ 25.9 \end{array}$	$\substack{(25.4)\\20.8}$	$\substack{(23.5)\\27.8}$	$\begin{array}{c} 50.1 \\ 56.1 \end{array}$	$\begin{array}{c} 34.7\\ 37.0 \end{array}$	$19.1 \\ 15.7$

Table 1. ¹³C Chemical Shifts of N-Nitroso-decahydroquinolines^a

^a In ppm. Recorded on a Varian XL-100 Pulsed Fourier Transform Spectrometer, operating at 25.16 MHz, as 1 *M*-solutions in $\text{CDCl}_3 + 4\% Me_4$ Si, at +30° unless indicated. ^b Major conformer. ^c Assignments ascertained by comparison with multideuterated analog (see ref.³ for parent amine). ^d Minor conformer. ^e Not seen. ^f In *DMSO-d*₆, at + 130°. ^g Assignments which are not unambiguous are parenthesized.


sum of $A_{1,3}^{anti}$ and $A_{1,3}^{syn}$ -strain of the nitroso group with C-8 and CH₃ in A; the conformation B-a is again predominant (ratio 57:43). Finally, the isomeric **6** (Scheme 2, R' = H, $R'' = CH_3$) exists in the conformations B-s and A in a ratio of 91:9. In both forms the nitroso group encounters an $A_{1,3}^{anti}$ -strain with either CH₃ or C-8. In the parent amine the form with axial methyl is not observed^{4a}, which indicates a palpable reduction of the CH₃/C-4.8a interaction in the nitrosamine.

Equilibration reactions were carried out by stirring 1-6 with equimolar amounts of potassium-t-butoxide in DMSO at + 90° for 70 hours under N₂. The mixtures were diluted with water, made slightly acidic with CH_3CO_2H and extracted with petroleum ether. Material balance was ~ 90%. Equilibrium compositions were determined by glass capillary gas chromatography (SE 30; 40 m). Reproducibilities with various temperature programs was $\pm 0.2\%$; equilibrations starting with 1 or 2, or with 3-6, gave identical results ($\pm 0.5\%$).

The equilibrium composition starting with 1 or 2 was 57% 1, 43% 2, corresponding to a ΔG° of 0.85 kJ/mol. Simple computation of stabilities by adding strain energies predicts a rather higher stability for 1 $(A_{1,3}^{anti} \sim 8.8 \text{ kJ/mol})^2$ compared to 2 $(C-8/C-2 + C-8/C-4 + C-6/C-4 \sim 11.9 \text{ kJ/mol})$, which is offset by an entropy term due to the two conformations of 2 $(\Delta G_{calc}^{\circ} = 3.1 - 2.1 = 1.0 \text{ kJ/mol})$.

In the 2-methyl series the equilibrium composition starting with

either 3, 4, 5, or 6 was 65% 3, 2% 4, 13% 5 and 20% 6. This is again in good agreement with considerations based on strain energies: using values reported for N-nitroso-2-methyl-piperidines² (and neglecting the

small amounts of the minor conformation of **6**), values of **16**.7 (**3**), ≥ 25.9 (**4**), 24.1 (**5**) and 20.7 (**6**) kJ/mol are obtained. Correcting once more for the two conformations of **4** and **5**, only the result for **4** is low, which is not unexpected, since the piperidine ring in this case is not a chair, and the reported value² for the A_{13}^{syn} -strain was only a lower limit.

The equilibrium mixture of **3-6** contains as major components the two nitrosamines derived from the amines least abundant in the hydrogenation mixture of quinaldine^{4a}, which thus become available after denitrosation¹. Since **3** crystallizes from the mixture, 2α -methyl-trans-decahydroquinoline can be easily obtained in pure form. A more detailed discussion with full spectral data and the results of a number of additionally substituted derivatives of **1-6** will be given in a full paper.

Acknowledgement

The author is grateful to Prof. K. Kratzl for his support, and to Dr. W. Silhan for operating the Varian-XL-100 NMR spectrometer.

References

- D. Seebach and D. Enders, Angew. Chem. 87, 1 (1975);
 D. Seebach, D. Enders, and B. Renger, Chem. Ber. 110, 1852 (1977);
 B. Renger, H.-O. Kalinowski, and D. Seebach, ibid. 110, 1866 (1977). B. Renger, H. Hügel, W. Wykypiel, and D. Seebach, ibid. 111, 2630 (1978).
- ² R. R. Fraser and T. B. Grindley, Canad. J. Chem. 53, 2465 (1975); R. R. Fraser, T. B. Grindley, and S. Passannanti, ibid. 53, 2473 (1975).
- ³ F. W. Vierhapper and E. L. Eliel, J. Org. Chem. 40, 2734 (1975); 41, 199 (1976); 42, 51 (1977); 44, 1081 (1979).
- ⁴ (a) H. Booth, D. V. Griffiths, and M. L. Jozefowicz, J. Chem. Soc. Perkin II 1976, 751; (b) H. Booth and A. H. Bostock, ibid. 1972, 615.
- ⁵ Y. L. Chow, Canad. J. Chem. **45**, 53 (1967); Y. L. Chow, C. J. Colon, and J. N. S. Tam, ibid. **46**, 2821 (1968); Y. L. Chow and C. J. Colon, ibid. **46**, 2827 (1968).